Ruby Vs. Python: Which Will You Choose for Your Next Project?

Ruby vs. Python

In modern programming, two languages often find themselves in the limelight of debates and comparisons between Ruby and Python. Both revered for their simplicity and readability, they’ve powered some of our generation’s most iconic web platforms and tools. 

Yet, developers often find themselves at a crossroads when choosing one for their next project. Each language has its own strengths, applications, and staunch advocates, which makes the decision far from straightforward. In this blog, we will dive deep into the nuances, compare the capabilities, and provide insights to help you make an informed choice between Ruby and Python for your upcoming endeavor.

Introduction to Ruby

Born in the 1990s, Ruby is a versatile programming language crafted by Yukihiro Matsumoto. Inspired by languages like Perl and Smalltalk, it was shared with the world in 1995, aiming to make coding more adaptable and efficient.

Ruby is a vibrant, freely available programming language emphasizing clarity and efficiency, ideal starting point for beginners. Its consistent structure and abundant resources and documentation simplify the learning curve. 

Prioritizing developer efficiency, Ruby offers libraries for task automation and promotes clear code, enabling newcomers to develop applications swiftly. The supportive Ruby community offers guidance through forums and study groups, enhancing the learning experience. Its versatility spans web development to data analysis, offering novices varied programming avenues. 

Furthermore, frameworks like Ruby on Rails guide beginners in web development, streamlining the creation of web-based projects.

ruby is used

Core Ruby Features

Below are the core features of the Ruby programming language.

  • Clean Syntax- Boasting a syntax mirroring natural language, Ruby ensures code clarity and ease of maintenance, which expedites development.
  • Metaprogramming– Ruby’s robust features enable the dynamic creation of classes and methods at runtime. With functionalities like define_method, Ruby can intuitively produce and adapt code based on real-time data or logic, leading to concise and DRY (Don’t Repeat Yourself) code.
  • Object-Centric- Everything – from strings and numbers to booleans – is treated as an object in Ruby. This inherent object orientation paves the way for class definitions, inheritance, polymorphism, and encapsulation, promoting modular programming.
  • Community Support- With a thriving developer community, Ruby offers extensive libraries and frameworks. Notably, the Ruby on Rails framework, grounded in Ruby, stands out for building robust web applications.
  • Rapid prototyping- Ruby’s adaptable syntax dynamic characteristics and extensive library offerings expedite development. Furthermore, its metaprogramming capabilities facilitate swift advancements and prototype modifications, optimizing time and effort.

Advantages of Ruby 

These advantages have made Ruby a preferred choice for many startups and established companies looking to build robust web applications efficiently.

  • Easy Learning Curve- Ruby’s syntax is intuitive and mirrors natural language, making it accessible for newcomers and allowing seasoned developers to grasp its nuances quickly.
  • Faster Time-to-Market- With frameworks like Ruby on Rails and a wealth of ready-made libraries (gems), Ruby facilitates rapid development, ensuring your applications and websites can be launched swiftly.
  • Cost-Efficient Development- Ruby’s open-source nature, combined with many free libraries and tools, means businesses can reduce development costs. Additionally, the development speed translates to lower labor costs and quicker returns on investment.

Limitations of Ruby 

While Ruby () has numerous advantages, like any framework, it has limitations. Here are 3-4 core limitations.

  • Performance Overheads- Ruby, the language on which Rails is built, is often considered slower than languages like C++ or Java. While Rails is sufficient for many applications, extremely high-performance applications might find it less optimal.
  • Niche Usage- While Ruby shines in web development, its adaptability for diverse applications might be somewhat restricted.

It’s important to note that while Ruby has these limitations, it remains a powerful tool for many use cases, especially web applications that benefit from rapid development cycles.

Where to use Ruby?

Given its dynamic, object-oriented nature and strong ecosystem, Ruby is well-suited for several scenarios. Here are some instances where using the Ruby programming language might be a great choice.

for what ruby is used

  • MVPs and Startups- If you’re a startup looking to quickly prototype or build a minimum viable product (MVP), Ruby’s ease of use and rapid development capabilities make it a solid choice.
  • E-commerce Sites- Platforms like Shopify, built on Ruby, showcase its strengths in developing scalable and user-friendly e-commerce solutions.
  • Content Management- If you want to create a content-driven site or a custom content management system, Ruby offers several gems (libraries) and tailored tools.
  • Custom Database Solutions- Ruby can effectively craft solutions involving intricate database work, given its robust ORM (Object-Relational Mapping) capabilities.
  • Web Scraping- If you need to extract large amounts of data from websites, Ruby, combined with libraries like Nokogiri, can be a powerful tool for web scraping.
  • Automation and Scripting- Ruby’s expressive syntax and extensive standard library can be beneficial for automating repetitive tasks or building utility scripts.
  • API Development- If your project involves creating a RESTful API, frameworks like Sinatra or Rails can be used to design efficient and scalable APIs in Ruby.
  • Integration Projects- Ruby’s vast library ecosystem can aid in projects where you must integrate different software components or services.
  • Cloud and DevOps- For infrastructure automation, configuration management, or other DevOps-related tasks, tools like Chef or Capistrano, built with Ruby, come in handy.

Companies Using Ruby

companies using ruby

Introduction to Python

Python, one of the most versatile and accessible programming languages, has carved a significant niche in the tech world since its inception by Guido van Rossum in the late 1980s. With a syntax that emphasizes readability and a design philosophy that champions code simplicity and clarity, Python has become the go-to language for beginners and seasoned developers alike. 

Its vast array of applications, from web development and data analysis to artificial intelligence and scientific computing, showcases its adaptability. Today, Python stands as a language and a community-driven movement, powering some of the most innovative projects in the digital landscape. With many plugins, tools, and libraries, Python is widely used in creating complex apps leveraging AI, ML, and other technologies. 

There is no doubt about the growing popularity of Python.

python popularity

Image Credits- Statista

Core Python Features

Python is renowned for its myriad features that cater to beginners and seasoned developers. Here are 5-6 core features of Python.

  • Readable Syntax- Python emphasizes code readability, using indentation to define code blocks. This makes the code clean and easy to understand, often resembling plain English.
  • Dynamic Typing- Variables in Python do not require an explicit type declaration, and their types can change over their lifecycle. This provides flexibility in coding but also requires developers to be cautious.
  • Extensive Standard Library- Python boasts a rich standard library that covers a range of modules and tools, reducing the need for external libraries and making many tasks more straightforward.
  • Interpreted Language- Python is interpreted, meaning it executes code directly, line-by-line, which aids in easier debugging and rapid prototyping.
  • Cross-platform Compatibility- Python is inherently portable. Code written on one platform, be it Windows, macOS, or Linux, can typically run on any other platform without modification.
  • Support for Multiple Paradigms- While Python is primarily object-oriented, it also supports procedural and functional programming paradigms, offering flexibility in how developers approach problems.

The combination of these core features and the vibrant community supporting it makes Python a top choice for various applications, from web and software development to scientific research and AI.

Advantages of Python

Python has become one of the leading programming languages in the tech industry, and its widespread adoption can be attributed to several benefits.

  • Beginner-Friendly- Python’s clean and readable syntax makes it a favorite for beginners. The simplicity aids in quick learning and understanding of programming concepts.
  • Efficient Development- Python’s rich standard library and vast ecosystem of third-party packages mean developers can accomplish a lot with fewer lines of code, leading to faster development times.
  • Flexibility- Python is versatile and supports multiple programming paradigms, including procedural, object-oriented, and functional programming.
  • Robust Community- A vibrant community backs Python. This ensures a constant influx of tools, libraries, tutorials, and forums to help developers at every skill level.
  • Cross-Domain Application- Python finds utility in diverse domains- web development (Django, Flask), data science (Pandas, NumPy), artificial intelligence (TensorFlow, PyTorch), automation, gaming, and more.
  • Portability & Scalability- Python applications can run seamlessly across different platforms, and with the right tools and libraries, it can scale to handle large-scale applications.
  • Integration Features- Python integrates with other languages and technologies, facilitating features like web services, database connections, and integration with C/C++ libraries.
  • Strong Support for Testing- Python offers tools and libraries for robust testing, enabling a test-driven development approach, which results in fewer bugs and more stable products.
  • Cost-Effective- Being open-source, Python reduces development costs. Additionally, its efficiency and ease of integration can reduce time-to-market, leading to cost savings.

These benefits collectively make Python a compelling choice for organizations and individual developers seeking an efficient, reliable, and versatile programming language.

Limitations of Python 

While Python offers many benefits, it has certain limitations. Here are the critical limitations of Python.

  • Speed Constraints- Python is an interpreted language, and thus, its execution is generally slower than compiled languages like C++ or Java. While this difference in speed isn’t noticeable for many applications, it can be a limiting factor for compute-intensive applications.
  • Mobile Development Limitations- While Python can be used for mobile app development, it’s not the go-to choice. Languages and frameworks like Swift (for iOS) and Java/Kotlin (for Android) are commonly used in mobile development.

Despite these limitations, Python’s versatility, simplicity, and extensive libraries often outweigh its drawbacks for many applications. Still, it’s essential to consider these limitations when determining the best fit for specific projects.

Where to use Python?

where to use python

Python’s adaptability makes it suitable for a wide array of tasks. Here are 6-7 use cases where you can employ Python.

  • Web Development- Using frameworks like Django or Flask, developers can design and deploy intricate web applications ranging from blogs to e-commerce sites.
  • Data Analysis & Visualization- With Pandas for data manipulation and Matplotlib or Seaborn for visualization, Python is a top choice for data scientists to dissect information and generate insightful visual representations.
  • Machine Learning- By leveraging libraries such as sci-kit-learn, TensorFlow, and PyTorch, researchers and developers can craft predictive models, neural networks, and more.
  • Automation & Scripting- Python’s concise syntax makes it perfect for writing scripts to automate repetitive tasks, from managing files to automating emails or web browser sessions.
  • Cybersecurity- Python’s flexibility enables security professionals to write penetration testing scripts and network scanners or even develop full-fledged cybersecurity tools.
  • Game Development- Though not its most common use, Python’s Pygame framework allows for creating simple video games.
  • Internet of Things (IoT)- With platforms like Raspberry Pi, Python becomes a bridge to control and gather data from embedded devices, making smart machines more intelligent.

These use cases showcase Python’s wide-ranging capabilities and vast potential in various fields and industries.

for what python is used

Companies Using Python

companies using python


While Ruby and Python have their own unique characteristics and are often used for different purposes, they share several core similarities.

  • High-Level Languages- Both Ruby and Python are high-level, interpreted languages. This means they abstract away most of the complex details of the computer’s operation, allowing developers to write applications using easily understandable syntax.
  • Object-Oriented- Both languages primarily adopt an object-oriented approach. This means they treat data as objects with associated attributes and methods, making organizing and managing code easier.
  • Dynamic Typing- In both Ruby and Python, variables are dynamically typed. This means that a variable’s type is determined at runtime and can be changed as the program executes.
  • Standard Libraries- Each of these languages comes equipped with extensive standard libraries that cater to a wide range of functionalities, allowing developers to perform many tasks without needing external packages or tools.
  • Community and Open Source- Ruby and Python have solid and active communities. They are open-source languages, meaning that their source code is freely available. This has led to a rich ecosystem of tools, libraries, and frameworks built around them.
  • Platform Independence- Both languages are cross-platform, meaning that, in most cases, code written in one operating system (like Windows) can be run on another (like macOS or Linux) without any modifications.

While these similarities exist, it’s essential to remember that each language has its strengths and ideal use cases. The choice between Ruby and Python often comes down to the specific requirements of a project or personal preference.

Ruby vs. Python: Detailed Comparison

Having understood the foundational attributes, nuances, and commonalities, let’s delve into the contrasts between Ruby and Python. In the following sections, we’ll explore their standing in the tech world, application scenarios, employment prospects, and other factors to assist you in determining which language—Ruby or Python—best aligns with your needs.

1. Ruby vs. Python: Popularity 

When comparing Ruby and Python based on their popularity, various metrics, including developer surveys, job postings, community contributions, and more, can be considered. As per w3techs, below are the current scenarios between Ruy and Python usage over the last year.

Based on TIOBE’s data, Ruby accounts for a mere 0.94% of the global market, landing it in the 18th spot on the list of the Top 20 most-used technologies worldwide.

On the other hand, Python claims around 12% of the worldwide market share. It has experienced a remarkable ascent from the 8th position in 2013 to clinch the top spot among programming languages, a surge primarily driven by the consistent advancements in AI.

Ruby vs. Python: Popularity

Image Credits- jaydevs

2. Role in Software Development

Python and Ruby are employed in app creation, refining, and automating DevOps activities.

In particular, these languages are adept at crafting scripts that simplify processes such as building, deploying, and managing infrastructure. Platforms like GitLab, Jenkins, and Ansible effortlessly accommodate scripts from both Python and Ruby, ensuring uninterrupted development, even among geographically dispersed teams.

While both have their merits, a distinguishing feature of Python within project frameworks is its prowess in interfacing with other coding languages. Often dubbed a “bridging language,” Python seamlessly connects with other technologies like C++, Java, and Go. This characteristic becomes especially significant in a microservice setup, allowing different app “modules” to be constructed using various technologies.

3. ML & Data Science

Python for ML & Data Science- Python has become the dominant language in Machine Learning (ML) and Data Science. This dominance is primarily attributed to its rich ecosystem of data-centric libraries such as NumPy, pandas, and matplotlib for data manipulation and visualization, as well as TensorFlow, Keras, and scikit-learn for machine learning. 

Additionally, the community support for Python in the ML and data analytics spaces is unparalleled, which ensures continued growth, updates, and readily available resources. The vast array of tools and extensive documentation make it easier for newcomers to dive into data science projects with Python.

Ruby for ML & Data Science- While Ruby is a powerful and elegant language, it has yet to see the same level of adoption in the ML and Data Science sectors as Python. Nevertheless, libraries like Ruby Numo for numerical computations and Rumale for machine learning show the language’s potential in this domain. 

The Ruby community’s emphasis on developer happiness and productivity makes it an attractive choice for various applications, but when it comes to ML and Data Science, its ecosystem is not as expansive as Python’s, making it less of a go-to choice for these fields.

4. DevOps

Ruby for DevOps- Ruby, mainly due to the success of Chef and Puppet, has been a significant player in the DevOps world. These configuration management tools, written in Ruby, have set a strong precedent for infrastructure as code, enabling IT automation at a grand scale. 

The Ruby ecosystem promotes a ‘convention over configuration’ philosophy, seen notably in Ruby on Rails, which translates well to the DevOps practices of consistency and automation. Consequently, many DevOps professionals have become acquainted with Ruby due to its association with these influential tools.

Python for DevOps- Python’s versatility has also made it a popular choice in the DevOps space. Tools like Ansible, a robust IT automation tool, and SaltStack, designed for configuration management, are Python-based and have garnered substantial attention. 

Python’s extensive standard library and the vast availability of third-party packages make it conducive for scripting and automation, both critical components in DevOps. Moreover, Python’s readability and straightforward syntax make it easy for DevOps professionals to write and maintain scripts, fostering a more collaborative and efficient environment.

5. Automation 

Ruby for Automation- with its expressive syntax and powerful metaprogramming capabilities, Ruby offers a robust automation platform. Its dynamic nature and flexibility, combined with the ‘principle of least surprise’, make it relatively straightforward to understand and write scripts for various automation tasks. 

Gems like “Capybara” and “Watir” showcase Ruby’s strength in web automation, allowing for efficient testing and web scraping. Moreover, tools like “Thor” and “Rake” are popular in the Ruby community for building command-line applications and task automation, respectively. This ecosystem, centered on developer happiness, ensures Ruby remains a strong contender in the automation domain.

Python for Automation- Python has long been lauded as the “Swiss army knife” of programming languages due to its versatility, which extends prominently into automation. With its clear and readable syntax, Python scripts are often self-explanatory, making automation tasks more maintainable and collaborative. 

Libraries like “Selenium” for web automation, “PyAutoGUI” for GUI automation, and “Fabric” for system administration showcase the breadth of Python’s capabilities. Additionally, Python’s expansive standard library and modules such as “os”, “sys”, and “subprocess” offer native tools that make system automation more accessible. This richness and breadth in its ecosystem ensure Python is often the first choice for various automation challenges.

6. Testing 

Ruby for Testing- Ruby has a strong testing culture, with the Ruby on Rails framework significantly emphasizing Test-Driven Development (TDD). The Ruby ecosystem boasts a variety of robust testing tools and libraries. “RSpec” stands out as a popular Domain Specific Language (DSL) for writing readable tests, while “Capybara” and “FactoryBot” streamline integration and unit tests, respectively, for web applications. “MiniTest”, another versatile tool, offers traditional assertion-based and spec-style tests. 

Ruby’s metaprogramming capabilities also provide a dynamic means to generate test cases, mock objects, and craft flexible test setups. This rich landscape emphasizes readable, maintainable, and comprehensive test suites.

Python for Testing- Testing in Python is supported by various tools, each catering to different testing paradigms and needs. The built-in “unittest” module provides a traditional xUnit-style framework, ensuring that even without external libraries, Python developers have testing capabilities at their fingertips. Tools like “pytest” elevate the testing experience by offering a no-boilerplate approach and feature-rich plugins. “Nose2“, building on the legacy of “nose”, further extends Python’s testing capabilities. 

For web testing, “Selenium” integrates seamlessly with Python, and for mocking and patching, “unittest.mock” offers a range of options. Python’s focus on readability and simplicity is mirrored in its testing tools, emphasizing clarity and thoroughness.

7. Community Growth

The presence of a robust community and a supportive network is pivotal when harnessing any technology for a project. The bigger the community, the smoother the project’s progression. With an active community, developers can.

  • Seek guidance from the pooled wisdom on online platforms, forums, and community-led websites to tackle coding hurdles.
  • Utilize open-source resources to amplify application functionalities and hasten the development process.
  • Stay abreast of recent innovations and churn out cutting-edge solutions. Additionally, the community can act as a reservoir of potential talent. By participating in community events or engaging online, businesses can spot and recruit proficient professionals to enrich their teams.
  • Ruby’s community is home to approximately 2.4 million dedicated developers. They benefit from a close-knit ambiance, top-notch documentation, and supportive peers, ensuring projects are executed adeptly.

Regarding community strength, Python outshines many of its counterparts with a staggering community of around 17 million enthusiasts. It offers a wealth of educational materials and a suite of ready-for-action tools.

8. Security Aspect

Python and Ruby are recognized for their security strengths. Data from WhiteSource indicates that only 6% of total vulnerabilities are linked to Python, while Ruby accounts for 5%. In contrast, the C language is associated with 47% of reported vulnerabilities. When considering more severe threats, 19% of vulnerabilities found in Ruby are highly severe, compared to 15% in Python.

Most security issues in applications built with Python or Ruby arise from components written in other languages. Common vulnerabilities include SQL injection and XML file parsing. Other areas of concern include Cross-site Scripting (XSS) and authentication protocols.

The proactive involvement of the community bolsters the security of both languages. Ruby actively engages in the HackerOne bounty program, ensuring rapid response and resolution to reported vulnerabilities, with patches released at a minimum semi-annual frequency. Python’s security can be assessed using community-crafted tools such as Python Taint, Tinfoils, and Pyntch.

9. Multithreading

Effective multi-threading is vital for maximizing computer resources. These applications have segments operating simultaneously, tackling tasks like reading files or managing API connections. Designing such applications is intricate, demanding deep expertise to navigate issues like race conditions and deadlocks.

Python uses its ‘threading’ package for parallelism, with the Global Interpreter Lock (GIL) managing concurrent execution. While GIL ensures data consistency, it can sometimes slow down processes.

On the other hand, Ruby initiates threads with Exceptions don’t typically halt the program; the thread quietly ends. Thread pools can limit active threads, and the Mutex class manages access to shared resources. Deadlocks are addressed with condition variables, and gems like ‘parallel’ and ‘workers’ can expedite multi-threaded application development in Ruby.

10. Performance

While both Python and Ruby exhibit impressive performance, Ruby often processes computer programs at a speed roughly double that of Python. In a head-to-head comparison using benchmark programs, Ruby finishes tasks in nearly half the time it takes Python. For instance, while Python requires 567.56 seconds to run an n-body program, Ruby accomplishes it in just 232.08 seconds.

However, this advantage in speed for Ruby comes with a trade-off in memory usage. Running the n-body program consumes 22,968 memory units in Ruby, whereas Python uses a more modest 8,076 units.

  • While loops

Ruby vs. Python: Performance while loop

Image credits- Quora

Ruby takes 3.82 seconds,

Python takes 24.04 seconds.

Winner: Ruby.

  • Bigint Multiplication

Bigint Multiplication

Image credits- Quora

Ruby takes: 23.503788766s

Python takes: 40.691734s

Winner: Ruby.

  • Eratosthenes


Image credits- Quora

Ruby takes 2.394614951s

Python3 takes: 3.111802s

Winner: Ruby.

11. Average Developer’s Salaries

The varying popularity and demand between Ruby on Rails and Python shape developers’ salaries, with differences often based on geographical regions. Here’s a general salary comparison between Ruby engineers and Python developers for informed hiring decisions.

Hire Python Developers 

python developers

Image credits- stackoverflow

  • With its expansive application in web development, data science, AI, and machine learning, Python has seen a surge in demand for skilled developers.
  • As of the data from the StackOverflow Developer Survey in 2020, the median global salary for a Python developer stood at $59k.
  • The versatility of Python means that specialists in fields like data science or AI might command even higher salaries due to the specialized nature of their skills.

Ruby (particularly Ruby on Rails) 

ruby developers

Image credits- stackoverflow

  • Ruby, mainly when associated with the Ruby on Rails web framework, has been a choice for many startups and tech companies.
  • The median annual salary for Ruby developers globally, according to the same 2020 survey, was $71k, placing it higher than Python in this context.
  • The potentially higher salary reflects the scarcity of seasoned Ruby on Rails developers compared to the broader pool of Python developers.

While Ruby developers, on average, had a higher median salary as of the 2020 data, it’s essential to consider the specific role, specialization, geographic location, and industry demand when evaluating these figures.

Ruby vs. Python: Average Developer’s Salaries

12. Latest Trends in 2023

In the dynamic landscape of web development, staying updated is paramount. Whether you’re already harnessing the power of Ruby on Rails (RoR) or contemplating using Python, being in tune with the newest developments is vital. As we venture into 2023, let’s delve into the emerging trends to redefine web development’s horizon.

Ruby Trends to Watch in 2023

  • Rails 7- Eagerly awaited by the RoR community, Rails 7 promises streamlined web development with various enhancements.
  • API-Only Applications- API-first approaches dominate 2023, with RoR ideally suited for crafting backend APIs for diverse front-end solutions.
  • Frontend Diversification- RoR’s move from server-side leans towards integrating frontend frameworks like React and Vue.js for dynamic UIs.
  • Containerization and Orchestration- RoR applications in 2023 will frequently utilize container solutions like Docker and orchestration via Kubernetes for scalability and maintenance.
  • Microservices Architecture- Monolithic apps are fragmenting into microservices, with RoR aiding in efficiently constructing and managing these more minor services.
  • Performance Optimization- RoR will witness advanced optimization techniques in 2023, focusing on database queries, caching, and HTTP/2 adoption.
  • Enhanced Security Practices- With evolving cyber threats, RoR will emphasize fortified security, incorporating regular audits and advanced authentication.
  • Sustainability and Green Computing- With environmental awareness, RoR developers will prioritize energy-efficient, environmentally-friendly application designs.
  • Serverless Integration- RoR’s adoption of serverless platforms, like AWS Lambda, streamlines development by shifting focus from infrastructure to pure coding.


Python Trends to Watch in 2023


  • Python 3.12- comes with Improved error messages and offers suggestions and guidance. Python’s PEG parser now supports enhanced f-strings. There are speed optimizations, including inlined comprehensions. A new syntax has been introduced for annotating generics with type variables. Additionally, Linux users can utilize the robust perf profiler.
  • Surge in AI, ML, and Data Analysis- Python is the preferred language for AI, ML, and data science due to its user-friendly nature and abundant libraries.
  • Python in Web Development- Frameworks like Django, Flask, and FastAPI amplify Python’s footprint in web development.
  • Rising Asynchronous Programming- Asyncio’s emergence is streamlining concurrent programming, fostering scalable and efficient applications.
  • Embracing Type Annotations- Adopting type hints in Python elevates code clarity and minimizes runtime glitches.
  • Evolution via PEPs- Python Enhancement Proposals (PEPs) continue to refine the language, targeting features, performance, and security.
  • Python in Serverless Architecture- The growing appeal of serverless computing sees Python rising as a top choice, credited to its versatility.
  • Python’s Foray into Robotics and IoT- Frameworks like MicroPython boost Python’s adoption in robotics and IoT, catering to limited-resource settings.
  • Pursuit of Performance with Cython and PyPy- Initiatives like Cython and PyPy are harnessed to supercharge Python applications, meeting high-performance demands.
  • Hybrid Development- Momentum Blending Python with languages like Rust and C++ is becoming prevalent to leverage the best of diverse tech stacks in projects.

Ruby vs. Python: Tabular Difference

python vs ruby

Make the Right Choice with OnGraph Experts

When faced with “Ruby vs. Python, which should I choose?”, aligning with your project’s unique needs and objectives is essential.

Ruby excels in web app development, offering rapid prototyping, end-to-end action, and cost-effective solutions for business projects. On the other hand, Python opens doors to diverse applications, from embedding machine learning algorithms to streamlining DevOps tasks within projects.

Regardless of your choice, ensuring access to competent developers is crucial. If your team lacks expertise, consider recruiting remote professionals as a cost-effective and flexible solution. Partnering with OnGraph can connect you with vetted Python and Ruby experts skilled across various fields!

For more details, go through our portfolio page to see how we have helped companies develop leading web apps using Python and Ruby.


Top 15 Python Interview Questions With Answers

Top 15 Python Interview Questions

Python will continue to be one of the most widely used and popular programming languages in the business, regardless of how many languages a programmer learns. It’s a popular choice among both new and experienced programmers.

We’ve put together a list of the most often asked Python Interview Questions and Answers to help you prepare for the Python interview questions you might be asked during your interview.

We’ve covered all of the most commonly asked basic and advanced Python programming questions in our list of Python Scripting interview questions, along with extensive solutions to help you breeze through the employment interview.

To assist you in preparing for your upcoming interview, we have covered practically all of the relevant Python interview questions for freshers and experienced applicants.

This comprehensive list of Python interview questions will help you ease your Python programming job interview.

1. What is your understanding of Python?

Python is a scripting language that is extremely comprehensive, interactive, and object-oriented. It was created with the intention of making the text more readable for internet users. Apart from punctuation, it uses a variety of keywords in other languages. Unlike other languages, it contains fewer syntactic structures. Python is used to create AI-based intuitive web and mobile app development.

2. What are the benefits of using Python?

Python is a programming language that features objects, modules, threads, exceptions, and memory management that is automatic. Its advantages are well-known. It is simple and straightforward to use, portable, extensible and has a built-in structure while being open-source. 

3. What is pickling and unpickling?

Pickle takes any Python object and converts it to a string representation, which it then dumps into a file using the dump function. Pickling is the name for this method. Whereas, the process of recovering original Python objects from a stored text representation is known as unpickling.

4. How is Python interpreted?

Python is an interpreted programming language. Python programs are compiled from source code and run directly. It translates the programmer’s source code into an intermediate language, which is then translated into machine language, which must be executed.

5. How is memory managed in Python?

Memory management is handled via Python’s own heap space. All Python objects and data structures are stored in a private heap. This private heap, which is controlled by the Python interpreter, is not accessible to the programmer.

Allocating heap space for Python objects is handled by Python memory management. Programmers can use the core API to access some programming tools.

Python has a built-in garbage collector that recycles all unused memory, freeing it and making it available to the heap.

6. What are Python namespaces?

In Python, a namespace refers to the name that is assigned to each object. Variables and functions are the objects. Each object’s name and space (the address of the outer function in which the item is) are created as it is formed. The namespaces are stored in Python as a dictionary, with the namespace as the key and the object’s address as the value. In Python, there are four different types of namespaces:

  1. Built-in namespace– These namespaces contain all of Python’s built-in objects and are accessible at all times.
  2. Global namespace– These are the namespaces for all of the objects created at the main program level.
  3. Enclosing namespaces– These namespaces belong to the higher or outer function.
  4. Local namespaces– These namespaces are found in the inner or local function.

7. What are decorators in Python?

Decorators are used to change the appearance of a function without changing its structure. Decorators are usually defined prior to the function they will be enhancing. To use a decorator, we must first specify its function. Then we write the function to which it will be applied and simply place the decorator function above the function to which it will be applied. The @ symbol is used before the decorator in this case.

8. What is the difference between a list and a tuple?

The difference between a list and a tuple is that a list can be mutated, whereas a tuple cannot. A Tuple can be hashed as a dictionary key, for example.

9. How are arguments passed by value or by reference?

In Python, everything is an object, and all variables are references to objects. The functions determine the reference values. As a result, you won’t be able to change the value of the references. If the objects are mutable, you can change them.

10. What built-in type does python provide?

Python provides two built-in types: 

1) Mutable and 2) Immutable.

Mutable built-in types are:

  • List
  • Sets
  • Dictionaries
  • Immutable built-in types
  • Strings
  • Tuples
  • Numbers

Immutable built-in types are:

  • Strings
  • Tuples
  • Numbers

11. What is slicing in Python?

Slicing is a technique for gaining access to specific bits of sequences such as lists, tuples, and strings. [start:end:step] is the slicing syntax. This step can also be skipped. When we type [start:end], we get a list of all the elements in the sequence from the beginning (inclusive) to the end-1 element. It means the ith element from the end if the start or end element is negative i. The step represents the jump or the number of components that must be skipped. If there is a list, for example, [1,2,3,4,5,6,7,8]. Then, by printing every second element, [-1:2:2] will return elements from the last to the third element. [8,6,4] is an example.

12. What are python modules? Name some commonly used built-in modules in Python?

Python modules are executable files that contain Python code. Functions, classes, and variables can all be used in this code. A Python module is a .py file that contains code that may be executed.

The following are some of the most often used built-in modules:

  • os
  • sys
  • math
  • random
  • data time
  • JSON

13. Is indentation required in python?

Indentation is required in Python. It designates a coding block. An indented block contains all of the code for loops, classes, functions, and so on. The most common method is to use four space characters. Your code will not execute correctly if it is not indented, and it will also throw errors.

14. What is self in Python?

A class’s instance or object is called Self. This is explicitly supplied as the first parameter in Python. However, in Java, where it is optional, this is not the case. With local variables, it’s easier to distinguish between a class’s methods and attributes.

In the init method, the self variable refers to the newly created object, whereas it relates to the object whose method was called in other methods.

15. What are negative indexes and why are they used?

In Python, the sequences are indexed and include both positive and negative numbers. The positive numbers utilize ‘0’ as the first index and ‘1’ as the second index, and the procedure continues in this manner.

The index for a negative number begins with ‘-1,’ which is the last index in the sequence, and ends with ‘-2,’ which is the penultimate index, and the sequence continues as it does for a positive number.

The negative index is used to remove any new-line spaces from the string, allowing it to accept the S[:-1] character as the final character. The negative index is also used to represent the index in the correct order of the string.

I hope this set of Python Interview Questions will help you in your interview preparation. Best wishes!


If you are looking for Python developers for your next project, get in touch with us.

Also, if you have a question for us? Please let us know in the comments box, and we’ll get back to you as soon as possible. 

List of Top 10 Python App Development Frameworks in 2023



The latest Statista research shows that over 48% of developers worldwide use Python for software development. Python is among the most popular programming languages, with major firms like IBM, NASA, Spotify, and Instagram using them.

The popularity of Python is because of its vast range of libraries, packages, and frameworks. A Python application framework is a collection of modules and packages that allows developers to build apps through a pre-built implementation of redundant functions. They release developers from minor issues like thread management, sockets, and protocols.

There are several Python frameworks for mobile app development and web app development that enable seamless, efficient, and swift application development. We’ve listed the best frameworks in this blog.

Why Should I Go for Python App Development?

Python is best suited for creating dynamic applications integrated with CRUD operations and avoiding repetitive coding for activities like authentication and sessions. It also provides an execution system when you’re building a separate UI with associated logic. 

Python is also the best option when you have strict deadlines and time and resource constraints. From full-stack and DevOps to AI/ML, data engineering, and data science, Python offers all-around development options. 

Here are some reasons why Python is the king of programming languages:

  • Python’s vibrant range of frameworks, libraries, and tools enables swift development and gives access to code templates.
  • Python is a high-level programming language and quite close to English, hence it has a lower learning curve compared to other coding languages.
  • Python has a large developer community and rich documentation with new frameworks and libraries being added quite often.

What are the Types of Python Frameworks For App Development?

There are three types of Python application frameworks: Microframework, Full-stack, and Asynchronous Framework.

Micro Framework

Micro Framework

A Python micro-framework is easy to use with basic capabilities or features required for web development and does not have added functionalities like form validation and data abstraction layers. They are lightweight and useful for building small applications.

Some popular examples of Micro Python frameworks include CherryPy, Bottle, Falcon, and Dash.

Full-Stack Framework

Full-Stack Framework

A full-stack framework is an end-to-end solution for web and app development with functionalities like template layouts, form validation, form generator, and so on. It is the most convenient and popular Python framework since it offers features of back-end functions, front-end interfaces, and databases. 

Some popular examples of Full-stack Python frameworks include Django, Pylons, CubicWeb, and Giotto

Asynchronous Framework

Asynchronous Framework

The asynchronous framework empowers developers to work on large amounts of concurrent connections, databases, web servers, connection libraries, high-performance networks, and so on. It is gaining widespread popularity recently since the development of the Asyncio library.

Some examples of Asynchronous Python frameworks are Tornado, Growler, AIOHTTP, and Sanic.

How to Choose the Right Python Framework For App Development?

The most essential factor before selecting the right framework for development is the nature, size, and complexity of the project. For example, you can opt for a micro-framework for a smaller project while considering full-stack frameworks for larger projects. 

Also, here are some examples of frameworks based on the project’s nature.

Python application development

Other factors that you can consider before selecting a Python app development framework for your project are

  • Scalability to handle traffic load when they run on several servers
  • Core libraries like authentication, data validation, URL mapping/rewriting, and templating.
  • Comprehensive documentation with tutorials, sample codes, blogs, and snippets.
  • Easy installation of the preferred Python framework.

10 Most Popular Python Frameworks For App Development 

Here’s a list of the most popular python app development frameworks:


Django is a high-level development Python framework for creating both mobile and web apps that operate on a power ORM and follows the Model View Controller (MVC) pattern, making the code reusable and readable. It has built-in tools like URL routing/parsing, authentication system, form validation, template engine, and caching to ensure a swift development process.

Django follows the DRY (Don’t Repeat Yourself) concept and focuses on rapid app development with a neat design. It is the first choice of developers for any Python project due to its versatility, customization, scalability, deployment speed, simplicity, and compatibility with the latest Python versions.

According to a Stack Overflow survey of 2020, Django and Flask are the most popular Python frameworks. Popular examples of apps built with Django include Instagram and Spotify.

Key Features of Django:

  • Enables execution of automated migrations
  • Robust security
  • Enhanced web server support
  • Comprehensive documentation
  • Vast add-ins with SEO optimization



Flask is an open-source, lightweight, and the best Python microframework with a built-in development server, debugger, HTTP request processing, file storage, and support for establishing client-side sessions. It has a modular and adaptable design and added compatibility with Google App Engine.

Besides Django, Flask is another popular Python framework with the Werkzeug WSGI toolkit and Jinja2 template. Flask comes under the BSD license and it is inspired by the Sinatra Ruby framework. Popular examples of apps developed with Flask include Lyft and Netflix.

Key Features of Flask:

  • Jinja2 templating and WSGI compliance
  • Unicode-based with secure cookie support
  • HTTP request handling capability
  • RESTful request dispatch handling
  • Built-in server development and integrated unit-testing support
  • Plugs into any ORM framework



Web2Py is an open-source, full-stack, and scalable Python application framework compatible with most operating systems, both mobile-based and web-based. It is a platform-independent framework that simplifies development through an IDE that has a code editor, debugger, and single-click deployment.

Web2Py deals with data efficiently and enables swift development with MVC design but lacks configuration files on the project level. It has a critical feature, a ticketing system that auto-generates tickets in the event of issues and enables tracking of issues and status.

Key Features of Web2py:

  • No configuration and installation needed
  • Enables use of NoSQL and relational databases
  • Follows MVC design with consistent API for streamlining web development
  • Supports internationalization and role-based access control
  • Enable backward compatibility
  • Addresses security vulnerabilities and critical dangers



TurboGears is an open-source, full-stack, data-driven popular Python web app framework based on the ObjectDispatch paradigm. It comes with a powerful ORM and supports intelligible templating.

TurboGears is useful for building both simple and complex apps with its features implemented as function decorators with multi-database support. It offers high scalability and modularity with MochiKit JavaScript library integration and ToscaWidgets for seamless coordination of server deployment and front end.

Key aspects of TurboGears:

  • MVC-style architecture
  • Provides command-line tools 
  • Extensive documentation
  • Validation support with Form Encode
  • It uses pylons as a web server
  • Provides PasteScript templates



Falcon is a reliable and secure back-end micro Python application framework used for developing highly-performing microservices, APIs, and large-scale application backend. It is extensible and optimized with an effective code base that promotes building cleaner designs with HTTP and REST architecture.

Falcon provides effective and accurate responses for HTTP threats, vulnerabilities, and errors, unlike other Python back-end frameworks. Large firms like RackSpace, OpenStack, and LinkedIn use Falcon.

Falcon has the ability to handle most requests with similar hardware to its contemporaries and has total code coverage.

Key Features of Falcon:

  • Intuitive routing with URL templates
  • Unit testing with WSGI mocks and helpers
  • Native HTTP error responses
  • Optimized and extensible code base
  • Upfront exception handling support
  • DRY request processing
  • Cython support for enhanced speed



CherryPy is an object-oriented, open-source, Python micro framework for rapid development with a robust configuration system. It doesn’t require an Apache server and enables the use of technologies for Cetera templating and accessing data.

CherryPy is one of the oldest Python development frameworks mainly for web development. Applications designed with CherryPy are self-contained and operate on multi-threaded web servers. It has built-in tools for sessions, coding, and caching.

Popular examples of CherryPy apps include Hulu and Juju.

Key features of CherryPy:

  • Runs on Android
  • Flexible built-in plugin system
  • Support for testing, profiling, and coverage
  • WSGI compliant
  • Runs on multiple HTTP servers simultaneously
  • Powerful configuration system



Tornado is an open-source asynchronous networking Python framework that provides URL handling, HTML support, database support, and other crucial features of every application.

Tornado is as popular as Django and Flask because of its high-performing tools and features except that it is a threaded framework instead of being WSGI based. It simplifies web server coding, handles thousands of open connections with concurrent users, and strongly emphasizes non-blocking I/O activities for solving C10k difficulties. 

Key features of Tornado:

  • Web templating techniques
  • Extensive localization and translation support
  • Real-time, in-the-moment services
  • Allows third-party authorization, authorization methods, and user authentication
  • Template engine built-in
  • HTTP client that is not blocking



AIOHTTP is a popular asynchronous client-side Python web development framework based on the Asyncio library. It depends on Python 3.5+ features like Async and Awaits. 

AIOHTTP offers support for client and server WebSockets without the need for Callback Hell and includes request objects and routers for redirecting queries to functions.

Key highlights of AIOHTTP Python framework:

  • Provides pluggable routing
  • Supports HTTP servers
  • Supports both client and WebSockets without the callback hell.
  • Middleware support for web servers
  • Effective view building

Popular Cross-Platform Python Frameworks for Mobile App Development

Here are the two main cross-platform Python mobile app frameworks: Kivy and BeeWare



Kivy is a popular open-source Python framework for mobile app development that offers rapid application development of cross-platform GUI apps. With a graphics engine designed over OpenGL, Kivy can manage GPU-bound workloads when needed.

Kivy comes with a project toolkit that allows developers to port apps to Android and has a similar one for iOS. However, porting Python apps to iOS currently is possible with Python 2.7.

Features of Kivy:

  • Enables custom style in rendering widgets to give a native-like feel
  • Enhanced consistency across different platforms with a swift and straightforward approach
  • Well-documented, comprehensive APIs and offers multi-touch functionalities



BeeWare is another Python framework for mobile app development that enables developers to code apps in Python and cross-compilation for deployment on several mobile platforms and OS like Android, Linux GTK, iOS, and Windows.

The primary repository of BeeWare gets updated often with added commercial support including technical support, consulting, and training.

Features of BeeWare:

  • Enables code reusability
  • Provides consistency across apps with the native look and feel
  • Includes tools like Briefcase and Toga that are designed for precise functions
  • Agile developer community

Still, Confused? Partner with OnGraph for Python App Development

Python has several app development frameworks and selecting the perfect fit can prove tough with several factors to note from budget and complexity to scalability, additional features, learning curve, and so on. 

Fortunately, you can get the right pick for your project with OnGraph, a leading Python Development Company that offers tailored Python development solutions with proven expertise in various Python application frameworks like Django, Flask, TurboGears, Kivy, and Tornado.

Reach our Python experts now to develop a successful project.